
1© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Object Design:
Reuse, Part 2

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I
Lecture 12

2© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Outline of Today

• Abstract Methods and Abstract Classes
• Overwriting of Methods
• Simple Inheritance
• Contraction

3© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Recall: Implementation Inheritance v.
Specification-Inheritance

• Implementation Inheritance: The combination of
inheritance and implementation

• The Interface of the super class is completely inherited
• Implementations of methods in the super class

("Reference implementations") are inherited by any
subclass

• Specification Inheritance: The combination of
inheritance and specification

• The super class is an abstract class
• Implementations of the super class (if there are

any) are not inherited
• The Interface of the super class is completely inherited

4© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Abstract Methods and Abstract Classes

• Abstract method:
• A method with a signature but without an

implementation (also called abstract operation)

• Abstract class:
• A class which contains at least one abstract method is

called abstract class

• Interface: An abstract class which has only
abstract methods

• An interface is primarily used for the specification
of a system or subsystem. The implementation is
provided by a subclass or by other mechanisms.

5© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example of an Abstract Method

totalReceipts
collectMoney()
makeChange()
dispenseItem()

VendingMaschine

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()
dispenseItem()

CoffeeMachine

cansOfBeer
cansOfCola
chill()
dispenseItem()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseItem()

CandyMachine

dispenseItem()

dispenseItem() must be
implemented in each subclass.
We do this by specifying the
operation as abstract. Abstract
operations are written in UML
in italics.

6© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Rewriteable Methods and Strict Inheritance

• Rewriteable Method: A method which allow a
reimplementation.

• In Java methods are rewriteable by default, i.e. there
is no special keyword.

• Strict inheritance
• The subclass can only add new methods to the

superclass, it cannot over write them
• If a method cannot be overwritten in a Java program,

it must be prefixed with the keyword final.

7© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Strict Inheritance
Superclass:

drive()
brake()
accelerate()

Car

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

LuxuryCar
Subclass:
public class LuxuryCar extends Car
{
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}

public class Car {
 public final void drive() {…}
 public final void brake() {…}
 public final void accelerate()
{…}
}

8© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example: Strict Inheritance and
Rewriteable Methods

Original Java-Code:
class Device {
 int serialnr;
 public final void help() {….}
 public void setSerialNr(int n) {
 serialnr = n;
}
}
class Valve extends Device {
 Position s;
 public void on() {
 ….
 }
}

help() not
overwritable

setSerialNr()
overwritable

9© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example: Overwriting a Method

Original Java-Code:
class Device {
 int serialnr;
 public final void help() {….}
 public void setSerialNr(int n) {
 serialnr = n;
}
}
class Valve extends Device {
 Position s;
 public void on() {
 ….
 }
}

New Java-Code :
class Device {
 int serialnr;
 public final void help() {….}
 public void setSerialNr(int n) {
 serialnr = n;
}
}

class Valve extends Device {
 Position s;
 public void on() {
 …
 }
 public void setSerialNr(int n) {
 serialnr = n + s.serialnr;
 }
} // class Valve

10© 2006 Bernd Bruegge Software Engineering WS 2006/2007

UML Class Diagram

Device
- int serialnr

+void setSerialnr(int n)

Valve

Position s

+void on()

Device
- int serialnr

+void setSerialNr(int n)

Valve

-Position s

+ void on()
+ void setSerialNr()

11© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Rewriteable Methods:
Usually implemented with Empty Body

class Device {
 int serialnr;
 public void setSerialNr(int n) {}
}
class Valve extends Device {
 Position s;
 public void on() {
 …..
 }
 public void setSerialNr(int n) {
 seriennr = n + s.serialnr;
 }
} // class Valve

I expect, that the method
setSerialNr()will be
overwritten. I only write an

empty body

Overwriting of the method
setSerialNr() of Class

Device

12© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Bad Use of Overwriting Methods

One can overwrite the operations of a superclass
with completely new meanings.

Example:
Public class SuperClass {
 public int add (int a, int b) { return a+b; }
 public int subtract (int a, int b) { return a-b; }
}
Public class SubClass extends SuperClass {
 public int add (int a, int b) { return a-b; }
 public int subtract (int a, int b) { return a+b; }
}

• We have redefined addition as subtraction and
subtraction as addition!!

13© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Bad Use of Implementation Inheritance

• We have delivered a car with software that allows to
operate a on board stereo system

• A customer wants to have software for a cheap stereo
system to be sold by a discount store chain

• Dialog between project manager and developer:
• Project Manager:

• „Reuse the existing car software. Don‘t change this
software, make sure there are no hidden surprises. There
is no additional budget, deliver tomorrow!“

• Developer:
• „OK, we can easily create a subclass BoomBox inheriting

all the operations from the existing Car software“
• „All method implementations from Car that have nothing

to do with playing music will be overwritten with empty
bodies!“

14© 2006 Bernd Bruegge Software Engineering WS 2006/2007

What we have and what we want

musicSystem

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

BoomBox

engine
windows
musicSystem

brake()
accelerate()
playMusic()
ejectCD()
resumeMusic()
pauseMusic()

Auto

New Abstraction!

15© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Existing Class:
public class Auto {
 public void drive() {…}
 public void brake() {…}
 public void accelerate() {…}
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic()

{…}
 public void pauseMusic() {…}
}

Boombox:
public class Boombox
extends Auto {
 public void drive() {};
 public void brake() {};
 public void accelerate()
{};
}

What we do to save money and time

engine
windows
musicSystem

brake()
accelerate()
playMusic()
ejectCD()
resumeMusic()
pauseMusic()

Auto

musicSystem

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

BoomBox

16© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Contraction

• Contraction: Implementations of methods in
the super class are overwritten with empty
bodies in the subclass to make the super class
operations “invisible“.

• Contraction is a special type of inheritance.
• It should be avoided at all costs, but is used

often.

17© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Contraction must be avoided by all Means

A contracted subclass delivers the desired
functionality expected by the client, but:

• The interface contains operations that make no sense
for this class.

• What is the meaning of the operation brake() for a
BoomBox?

The subclass does not fit into the taxonomy
A BoomBox ist not a special form of Auto

• The subclass violates Liskov's Substitution
Principle:

• I cannot replace Auto with BoomBox to drive to work.

18© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Revised Metamodel for Inheritance

Inheritance

Specification
Inheritance

Implementation
Inheritance

Inheritance
for ReuseTaxonomy

Inheritance
detected by

generalization

Inheritance
detected by

specialization

Analysis
activity

Object
Design

Strict
Inheritance Contraction

19© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Example: Framework for Building Web
Applications

WebBrowser

RelationalDatabase

StaticHTML

WOAdaptor
WebServer

WoRequest Template

WebObjectsApplication

WORequest

EOF

WebObjects

20© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Frameworks

• A framework is a reusable partial application
that can be specialized to produce custom
applications.

• The key benefits of frameworks are reusability
and extensibility:

• Reusability leverages of the application domain
knowledge and prior effort of experienced developers

• Extensibility is provided by hook methods, which are
overwritten by the application to extend the
framework.

21© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Classification of Frameworks

• Frameworks can be classified by their position in
the software development process:

• Infrastructure frameworks
• Middleware frameworks

• Frameworks can also be classified by the
techniques used to extend them:

• Whitebox frameworks
• Blackbox frameworks

22© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Frameworks in the Development Process

• Infrastructure frameworks aim to simplify the
software development process

• Used internally, usually not delivered to a client.

• Middleware frameworks are used to integrate
existing distributed applications

• Examples: MFC, DCOM, Java RMI, WebObjects,
WebSphere, WebLogic Enterprise Application [BEA].

• Enterprise application frameworks are
application specific and focus on domains

• Example of application domains: telecommunications,
avionics, environmental modeling, manufacturing,
financial engineering, enterprise business activities.

23© 2006 Bernd Bruegge Software Engineering WS 2006/2007

White-box and Black-box Frameworks

• White-box frameworks:
• Extensibility achieved through inheritance and dynamic

binding.
• Existing functionality is extended by subclassing

framework base classes and overriding specific
methods (so-called hook methods)

• Black-box frameworks:
• Extensibility achieved by defining interfaces for

components that can be plugged into the framework.
• Existing functionality is reused by defining components

that conform to a particular interface
• These components are integrated with the framework

via delegation.

24© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Class libraries and Frameworks

• Class Library:
• Provide a smaller scope of reuse.
• Less domain specific
• Class libraries are passive; no constraint on the flow of

control.

• Framework:
• Classes cooperate for a family of related applications.
• Frameworks are active; they affect the flow of control.

25© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Components and Frameworks

• Components:
• Self-contained instances of classes
• Plugged together to form complete applications
• Can even be reused on the binary code level.

• The advantage is that applications do not have to be
recompiled when components change.

• Framework:
• Often used to develop components
• Components are often plugged into blackbox

frameworks.

26© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Documenting the Object Design

• Object design document (ODD)
= The Requirements Analysis Document (RAD) plus...

… additions to object, functional and dynamic
 models (from the solution domain)

… navigational map for object model
… Javadoc documentation for all classes

27© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Documenting Object Design: ODD
Conventions

• Each subsystem in a system provides a service
• Describes the set of operations provided by the

subsystem

• Specification of the service operations
• Signature: Name of operation, fully typed parameter

list and return type
• Abstract: Describes the operation
• Pre: Precondition for calling the operation
• Post: Postcondition describing important state after the

execution of the operation

• Use JavaDoc and Contracts for the specification
of service operations.

28© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Summary

• Object design closes the gap between the
requirements and the machine.

• Object design adds details to the requirements
analysis and makes implementation decisions

• Object design activities include:
• Identification of Reuse
• Identification of interface and implementation

inheritance
• Identification of opportunities for delegation
• Abstract operations and overwriting of methods

